A set is a collection in which:
- Each item is distinct. There are no duplicates
- There’s no sense of order. You cannot sort a set.
Operation | Syntax | Example |
---|---|---|
Union | \(A \cup B\) | \(\{1, 2, 3\} \cup \{2, 3, 4\} = \{1, 2, 3, 4\}\) |
Intersection | \(A \cap B\) | \(\{1, 2, 3\} \cap \{2, 3, 4\} = \{2, 3\}\) |
Set difference | \(A - B\) | \(\{1, 2, 3\} - \{2, 3, 4\} = \{1, 2\}\) |
Symmetric difference | \(A \triangle B\) | \(\{1, 2, 3\} \triangle \{2, 3, 4\} = \{1, 4\}\) |
Union \(A \cup B\)
- Copy set \(A\) into set \(X\)
- Add all values of set \(B\) into set \(X\), skipping duplicates
Intersection \(A \cap B\)
-
New empty set \(X\)
-
Foreach value in \(A\)
- If it’s not in \(B\), then add to \(X\)
-
Foreach value in \(B\)
- If it’s not in \(A\), then add to \(X\)
Set difference \(A - B\)
- Copy set \(A\) into set \(X\)
- Remove all values of set \(B\) from set \(X\), skipping values that don’t exist.
Symmetric difference \(A \triangle B\)
Can be calculated using the previous operations:
$$ A \triangle B = (A \cup B) - (A \cap B) $$
For example:
$$ \begin{align} \{1,2,3\} \triangle \{2,3,4\} &= (\{1,2,3\} \cup \{2,3,4\}) - (\{1,2,3\} \cap \{2,3,4\}) \\ &= \{1,2,3,4\} - \{2,3\} \\ &= \{1,4\} \end{align} $$
Naming differences in .NET
Math | .NET HashSet<T> |
---|---|
Union | .UnionWith(IEnumerable<T>) |
Intersection | .IntersectWith(IEnumerable<T>) |
Set difference | .Except(IEnumerable<T>) |
Symmetric difference | .SymmetricExceptWith(IEnumerable<T>) |
Reference
- Robert Horvick (2020, November 2). Algorithms and Data Structures - Part 2 [Course]. Pluralsight. https://www.pluralsight.com/courses/algorithms-data-structures-part-two